Telegram Group & Telegram Channel
🆕 Свежие новости из мира AI и Data Science

🔥 Модели, релизы и технологии:
Mistral Medium 3 — новая модель от Mistral AI для корпоративного сегмента: почти frontier-производительность за меньшие деньги
Gemini 2.5 Pro — улучшенная версия от Google с прокачанными способностями к программированию
NVIDIA Parakeet TDT 0.6B — речь в реальном времени: 60 минут аудио за 1 секунду, побеждает всех на Open ASR Leaderboard
PyTorch и AI-экосистема — как PyTorch стал центральным звеном в инфраструктуре генеративного ИИ

🧠 Статьи, исследования и лучшие практики:
Embeddings для непрофи — объяснение концепции эмбеддингов простым языком (есть график с собаками 🐶)
LLM и трансформеры — шпаргалка от Stanford — полный гайд по архитектурам больших языковых моделей
Обучение LLM на одном примере — новое исследование по обучению reasoning с минимальными данными

👍 Полезное:
Выбор MLOps-инструментов — как выбирать стек в зависимости от зрелости команды
CLIP vs SigLIP — подборка для интервью по Computer Vision (Middle/Senior)

Библиотека дата-сайентиста #свежак



tg-me.com/dsproglib/6432
Create:
Last Update:

🆕 Свежие новости из мира AI и Data Science

🔥 Модели, релизы и технологии:
Mistral Medium 3 — новая модель от Mistral AI для корпоративного сегмента: почти frontier-производительность за меньшие деньги
Gemini 2.5 Pro — улучшенная версия от Google с прокачанными способностями к программированию
NVIDIA Parakeet TDT 0.6B — речь в реальном времени: 60 минут аудио за 1 секунду, побеждает всех на Open ASR Leaderboard
PyTorch и AI-экосистема — как PyTorch стал центральным звеном в инфраструктуре генеративного ИИ

🧠 Статьи, исследования и лучшие практики:
Embeddings для непрофи — объяснение концепции эмбеддингов простым языком (есть график с собаками 🐶)
LLM и трансформеры — шпаргалка от Stanford — полный гайд по архитектурам больших языковых моделей
Обучение LLM на одном примере — новое исследование по обучению reasoning с минимальными данными

👍 Полезное:
Выбор MLOps-инструментов — как выбирать стек в зависимости от зрелости команды
CLIP vs SigLIP — подборка для интервью по Computer Vision (Middle/Senior)

Библиотека дата-сайентиста #свежак

BY Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение




Share with your friend now:
tg-me.com/dsproglib/6432

View MORE
Open in Telegram


Библиотека дата сайентиста | Data Science Machine learning анализ данных машинное обучение Telegram | DID YOU KNOW?

Date: |

What is Telegram?

Telegram’s stand out feature is its encryption scheme that keeps messages and media secure in transit. The scheme is known as MTProto and is based on 256-bit AES encryption, RSA encryption, and Diffie-Hellman key exchange. The result of this complicated and technical-sounding jargon? A messaging service that claims to keep your data safe.Why do we say claims? When dealing with security, you always want to leave room for scrutiny, and a few cryptography experts have criticized the system. Overall, any level of encryption is better than none, but a level of discretion should always be observed with any online connected system, even Telegram.

Mr. Durov launched Telegram in late 2013 with his brother, Nikolai, just months before he was pushed out of VK, the Russian social-media platform he founded. Mr. Durov pitched his new app—funded with the proceeds from the VK sale—less as a business than as a way for people to send messages while avoiding government surveillance and censorship.

Библиотека дата сайентиста | Data Science Machine learning анализ данных машинное обучение from sg


Telegram Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение
FROM USA